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J. Phys. A : Gen. Phys., Vol. 5, February 1972. Printed in Great Britain 

On deducing the form of surfaces from their diffracted echoes 

M V BERRY 
H H Wills Physics Laboratory, University of Bristol, Bristol BS8 lTL, U K  

MS received 8 July 1971 

Abstract. Kirchhoff diffraction theory is set up for the echo received back at the source 
when a spherical outgoing pulse of radiation is reflected from a rough surface. The formula- 
tion derived here permits a clear separation between those features of the echo that depend 
only on the form of the incident pulse, and those involving only the properties of the surface. 
The surface function depends on the contours of constant distance from the source which 
can be drawn in the surface; these are the appropriate analogues of Fresnel zone boundaries. 
Geometrical optics gives the singularities and discontinuities of the surface function. The 
problem of determining the surface function from echo data which are incomplete in the 
sense that they do not contain all radiation frequencies is discussed. For the special case of 
one dimensional roughness, the problem of how far the surface function can be deconvoluted 
to obtain the shape of the surface is considered. 

1. Introduction 

The vast literature dealing with wave theory is principally devoted to working out how 
wave systems are modified when they encounter objects or structures or media with 
which they interact according to known laws. Once the structure acting on the wave is 
specified, then, while it may be difficult to calculate what happens to the wave, at least 
the problem is well defined. But in practice it is very commonly the case that the wave 
system is only a tool for the investigation of structures whose form is unknown, and the 
question then arises: what information about the structure can be inferred from the 
modification that it impresses on the wave? On this inverse problem only scattered 
results exist : for three dimensional, spherically symmetrical structures interacting 
elastically with incident particles, for example, the form of the structure may be inferred 
if the scattering mechanism is assumed purely classical, and there are no caustics in the 
pattern of particle paths, or if the interaction is quantum mechanical, and the scattering 
potential has no bound states (Mott and Massey 1965); general three dimensional 
structures may be inferred if the wave mechanism is pure shadowing or pure phase 
modulation (Berry and Gibbs 1970), or if the interaction is weak, as in x ray crystal- 
lography. 

It is the purpose of the present paper to make some small inroads into the inverse 
problem for the case where the structure under investigation is a reflecting surface, 
and the wave system is a pulse from a localized source. The literature on the direct 
‘rough surface’ problem is enormous (see Beckmann and Spizzichino 1963 and the 
references therein), but it is primarily concerned with harmonic waves rather than pulses, 
and much of the general theory is set up for plane, rather than expanding, waves. 
The immediate motivation for this study is provided by experiments currently being 
carried out in the Antarctic, where the echoes from pulsed radio signals sent out from 
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aircraft are used to investigate the form of the ice-rock interface at a glacier bed (Robin 
et a1 1969) ; there are, however, many other applications of essentially the same technique, 
two being the study of sea beds by ultrasonic echoes and the investigation of the clutter 
introduced into radar echoes by the sea surface. 

It is essential to realize that any inference from echo to surface must be within the 
context of a well defined model for the reflection process. Our model will be the 
Kirchhoff diffraction theory, which is the simplest model describing. a wide range of 
qualitatively different conditions ; in particular, it includes geometrical optics as a 
special case. The principal conditions for the validity of the Kirchhoff theory are : 

(i) there must be no shadowing of one part of the surface by any other part, as seen 

(ii) Multiple scattering of waves between different parts of the surface is neglected. 

(iii) the waves are scalar ; this means, principally, that we are not going to consider 
the information about the surface that can be obtained from the polarization 
of the echo. 

(iv) The radiation is emitted isotropically; this means that we are not going to 
consider the effects of the directional properties of the sources used in practice. 
(The finite angle of the cone of radiation illuminating the surface actually goes 
some way towards counteracting the inevitable violation of (i) at large angles.) 

(v) The pulse arrives undistorted at the surface; in the glacier problem, this means 
that we are neglecting : (a) the refraction of the pulse at the ice surface and at 
layers within it; (b)  the effects of the frequency dependence of the complex 
dielectric constant of ice, on the pulse shape which arrives at the surface; 
(c)  scattering and absorption due to bubbles and objects in the ice; ( d )  reflection 
and absorption due to layers in the ice. All of these effects of the ice can to a 
certain extent be identified on the radar records, and taken into account 
(Robin et a1 1969). 

from the source. 

Concerning the incident pulse, we assume : 

We shall be primarily concerned with the inferences that can be drawn from the 
temporal behaviour of the echo observed at a single point ; from this one dimensional 
quantity it is clearly impossible to deduce the form of a surface known to vary in two 
dimensions. Therefore, in part of this preliminary investigation (0 4) we shall make the 
further assumptions : 

(vi) the surface height varies in one direction only (in other words, the surface is 
made up of ridges rather than hills). This commonly-employed but rather 
drastic assumption is somewhat justified by assumption (iv), since in practice 
the cones of illumination from radar aerials used in the Antarctic are wider 
fore-and-aft than they are sideways. 

Concerning the receiver, we assume : 
(vii) that it is coincident with and has the same isotropy as, the source; this is true 

for the glacier bed experiments, and it usually, but not invariably, applies in 
other applications. 

Finally, concerning the surface whose topography we are examining, we assume : 
(viii) that it is perfectly reflecting, so that the wavefunction is zero on it. In the case of 

Antarctic ice-rock interfaces, it has been estimated (Robin et al 1969) that the 
power reflection coefficient is only about 1 %, so that this is not a very good 
approximation. Refraction into the underlying substrate can be taken into 
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account (Beckmann and Spizzichino 1963, chap 2), but this complicates 
matters and we shall ignore it since our main concern is with the logic of the 
deconvolution problem in its simplest form (in most cases the only effect of 
penetration into the underlying rock will be to reduce the echo strength by a 
constant factor). 

Despite the length of this list, there remain possible simplifying approximations 
that we have not made. We have not assumed, for instance, that there exist characteristic 
lengths describing the height and lateral extent of typical roughnesses ; this is because 
in any real landscape there are likely to be irregularities on all scales within a wide 
range (Nye 1970, p 385). 

We begin ( Q  2) by casting Kirchhoff’s diffraction theory (set up in Appendix 1) into a 
form where the effects on the received echo due to the form of the incident pulse are clearly 
separated from those due to the shape of the surface. The effects of the surface are 
embodied in a function g(r) which is therefore a natural object of study. A general survey 
of the properties of g(r), together with the profound qualitative consequences of our 
imperfect knowledge ofg(r), constitutes Q 3. The general behaviour ofg(r) is given by the 
geometrical-optics approximation, whose details are worked out in Appendix 2. To 
make further progress we specialize in Q 4 to the case of one dimensional roughness, 
where a new surface function y ( p ) ,  derived from g(r), is considered, whose singularities 
can, in principle, give information about the ridges and valleys of the rough surface. 

It is not claimed that the work presented here is complete; on the contrary, at least 
three aspects of the deconvolution problem will be further explored in later publications : 

(1) the effect of the additional dimension(s) of information that can be obtained by 
moving the source. 

(2) The statistical information about the surface that can be obtained from the tail 
of the echo, together with the rather difficult question of how far this can be 
regarded as separate from the ‘geographical’ information about the unique 
topography near a particular source position. 

(3) Detailed calculation of the deconvolution integrals of§ 3 and $4, under laboratory- 
controlled conditions, using ultrasonic pulses and artificial surfaces scaled to 
correspond with the ice radar experiments. 

2. The basic diffraction formulae 

We define the surface C under investigation by its height f ( R )  above a horizontal 
reference plane xy, where R is the two dimensional vector leading to xy from the origin 0 
of the plane. We are not generally going to assume that the surface is in any sense 
‘close’ to the reference plane. The source S,  and the receiver, are situated at a height h 
vertically above 0. The distance r(R) from S to the point P on the surface above the 
point R on the reference plane, will be important throughout our argument ; it is given by 

r(R) = { ( h - f ( R ) ) 2 + R Z } 1 ’ z .  

This geometry is summarized in figure 1 ; the only restriction on the magnitudes involved 
is that h must exceed the surface height f ( R )  for all R.  
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S 

Figure 1. Basic geometry. 

The pulse emitted by the source is specified by its time behaviour F( t ) ,  or by the 
Fourier transform of this, namely 

Characteristically, F(t )  is a quasisinusoidal pulse with basic frequency wo , consisting 
of a small number m of waves (about ten in the ice radar experiments), so that F(w)  
consists of two peaks at w = f wo whose breadths are about 2w0/m (there are two peaks 
because F ( t )  is real, implying that F( - w )  = F*(w)). In accordance with our assumptions 
(4) and (5 ) ,  the wave incident upon the surface at the point r at time t can be written as 

where c is the appropriate wave velocity; this represents an expanding spherical wave 
train whose mean wavelength is Lo = 2nc/w,. 

Because we are using the Kirchhoff approach to diffraction theory, we regard the 
reflected wave $(t), that is received back at S at time t (the echo), as being made up of 
wavelets from all points of the rough surface. The wavelet received at time t from the 
point P on the surface, depends on the part of the pulse that was emitted at time 
t-2r(R)/c since the wave traverses the distance SP twice. The received wavelet is 
reversed in sign relative to the emitted part of the pulse, because of the reflection; 
furthermore, it depends not on the value F of the pulse at the instant of emission, but on 
the rate of change F ' ;  this is always necessary in Kirchhoff's theory (where it usually 
appears as a factor iw since that theory is usually set up for monochromatic waves) in 
order for the original expanding wave to be obtained in the case where there is no 
diffracting surface. It is shown in Appendix 1 that the received wave $(t) which correctly 
takes these effects into account is given by 

The form of the denominator in this formula takes account of the transformation from 
the integral over the actual surface to that over the flat reference surface, and also includes 
the obliquity factor in a modified form ; the equation (4) is valid (Appendix 1) if 

a condition satisfied for the pulses and source heights employed in practice. Equation (4) 
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defines the model on which our theory is based, and we shall use i t  even for expressing 
the reflected waves in the case of delta function pulses, where equation (5) is not obviously 
satisfied ; the diffraction occurring in these cases should still be correctly described 
qualitatively. 

A simple test of equation (4) is provided by the flat surface f ( R )  = 0 : use of (two 
dimensional) polar coordinates for the integration over R then yields 

which is exactly the form in which we would expect the wave given by equation ( 3 )  to be 
reflected from a flat surface. 

As it stands, equation (4) is not in a convenient form for extracting information 
about the surface; to transform it, we notice that the R dependence of the integrand 
occurs primarily in the function r(R), and that the spheres of constant r, centred on S ,  
cut the rough surface in a series of contours. These contours of constant r are the 
generalization to the case of pulses and rough surfaces of the circular Fresnel-zone 
boundaries which are useful when considering harmonic waves and flat surfaces. 
Thus we can perform the integration over R by first integrating around each contour 
(projected onto the R plane) at constant r, and then integrating over r from zero to' 
infinity. If the total length round all the (possibly disconnected) parts of the contour 
at r is L(r), then we can integrate around the contour by using a variable E running from 
0 to L(r) (figure 2), so that we have to find the transformation of the area elements 

element 

Figure 2. Contours in the R plane. 

from dx dy to d r  dl. Using equation (l), it is easy to see that the perpendicular distance 
IdRl between the contours r and r + dr at the point I is 

r dr 
ldRl = 

IR - ( h  -f(R))V,f(R)I ' 

Thus our basic diffraction formula (4) becomes (figure 2) 

where 
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The function g(r) represents the modification impressed by the surface on that part 
of the wave received at t which was emitted at { t  - ( 2 r / c ) } .  For a flat surface, there are 
no contours until r = h, after which the contours are circles, so that 

~ ( r )  = 2n(r2 - h2) lI2e(r  - h)  

and 

2n 
g(r) = -O(r -h )  

h 

where O(x) is the unit step function. Substitution of this into (8) yields (6)  immediately. 
The formulation (8) and (9) has the advantage of separating those contributions to 

the echo which depend only on the form of the incident pulse from those which depend 
only on the form of the surface. The latter contributions are embodied in the function 
g(r) which clearly represents the totality of information about the surface that is obtainable 
by analysing the reflected signal received back at S. 

3. Inferences about the surface: general two dimensional case 

The basic surface function g(r) is defined by the integral (9), from which it is clear that 
important contributions are likely to arise at those values of r for which the denominator 
in the integrand vanishes. From (7), these are the points where 

V,r(R) = 0. (11) 

These are the 'reflection points' of geometrical optics, where the surface is oriented 
perpendicular to the line joining it to the source (an equivalent way of expressing this is 
to say that at these points the r sphere is tangential to the surface). The way in which 
these reflection points contribute to  g ( r )  is worked out in Appendix 2, where it is shown 
that hilltops and floors of hollows of r(R) produce step discontinuities in g(r) (of which 
equation (10) is the simplest example) while saddle points (where a contour crosses itself) 
are characterized by logarithmic singularities. More severe singularities of g(r) are to 
be expected at those reflection points wherefocusing occurs, so that a.s well as (11) we 
also have the condition (Appendix 2) 

(Rk or R ,  can represent x or y ) ,  and at  least one great circle in the r sphere osculates the 
surface; this case rarely occurs, and has not been examined in detail. The smooth 
variation of g(r) between these various types of reflection point depends on the details 
of the contour system, and can only be found by a full evaluation of (9). 

We shall not discuss here the question of what detailed information about the surface 
f(R) can be obtained from a knowledge ofg(r), because in 0 4 we shall treat this problem 
for the simpler case of a surface which varies in one direction only. Instead we shall now 
examine what can be found out about g(r) itself by deconvoluting the measured data. 
If we define $(U) as the Fourier transform of the received echo, by analogy with (2 ) ,  
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it is easy to derive a formal expression for g(r) in terms of measured quantities, by using 
equation (8); the expression is 

g(r)  = -2i du--exp/ ?&4 -7). 2iur l-, u F ( o )  
(13) 

This is a formal expression only, because the integral can only be evaluated if the 
incident signal F(t )  contains components of all frequencies U. The simplest such signal 
is the delta function 

F ( t )  = s(t) 

which gives, from (13) or (8) 
Z r ' c  

g(r) = -471 l- dt$(t). 
3t 

In practice, of course, the incident signal has Fourier components only in some range of 
frequencies surrounding coo. This means that we can never know the complete behaviour 
of g(r), but only those of its wavenumber Fourier components, given by 

2i$(kc/2) 
kF(  kc! 2 )  

drg(r)exp(ikr) = - 

for which the frequency kci2 is present significantly in the outgoing pulse (in other 
words, a wavelength iL in the incident pulse gives information about k = 47~1, in g ( k ) ) .  

For quasimonochromatic pulses, these considerations imply that there are limits to 
the fineness with which we can examine g ( r )  : if the average wavelength in the pulse is i,, , 
then we cannot know those components of g(k) for which k substantially exceeds 4n i., . 
If we adopt the criterion that knowledge ofg(k) is equivalent to knowledge of the details 
of g(r) on a scale n/k (half a wavelength), then we have shown that we cannot discern 
details of g(r) that are finer than i0/4, a result which is almost obvious U priori (Of 
course we also have only limited information about the low frequency, coarse, variation 
of g(r), but in this case equation (14) can be supplemented by the knowledge that g(r) 
is never negative, and by the first and last returns in the echo, which delimit the spatial 
extent of the region where g(r) is nonzero. The numerical aspects of the deconvolution 
will, i t  is hoped, be examined in later work, in connection with laboratory ultrasonic 
pulse reflection experiments.) 

The finest details in g(r) are the discontinuities and singularities arising from the 
reflection points of geometrical optics, and we know now that these cannot be resolved 
in all their detail, because we can at best reconstruct a smoothed version of g(r), averaged 
over a distance A0/4. If, however, successive reflection points rz are separated by distances 
which, on average, considerably exceed &/4, then their effects on g(r) will still be 
discernible-of course the step discontinuities from hills and hollows will be smoothed 
into shoulders, and the logarithmic singularities from saddle points will appear as finite 
peaks, but it will still be possible to discern the topological features of the function r (R)  
by examining the smoothed function g(r). 

We may regard these circumstances, where the observed echo is dominated by the 
geometrical-optical features of g(r), as defining a smooth surface f(R). In the opposite 
case of a rough surface, the successive reflection points occur at separations Ar,  which are 
comparable with or smaller than i0/4 so that their effects on g(r) are not separately 
discernible after the smoothing. This criterion for roughness involves distance r from 
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the source, and not position R on the surface; if we say that two features can be resolved 
if the difference between their distances to the source exceeds 10/2, then in the case of, 
for instance, two hills of approximately equal height, their separation in radial distance 
AIR( must satisfy 

Ioh Io  AIR1 > - = - 
2r 2 sin a 

where a is the angle away from the vertical of the direction from the source to the hills. 
Thus two hills with the same value of [RI cannot be resolved, even if their azimuth angles 
are very different, and their separation IARI is many wavelengths. 

Surfaces occurring in nature can generally be expected to rough according to our 
definition, since they contain irregularities on all scales (Nye 1970, p 385ff). If we were 
to follow the convolutions of the contours of constant r around boulders, pebbles, sand, 
dust and, ultimately, atoms, it is clear that the connective topology of these contours 
would change infinitely often over a small finite range of r, so that g(r) would contain 
discontinuities and singularities, due to reflection points, on an infinitely fine scale-it 
would in fact be a mathematically pathological function. This type of behaviour is well 
known in geomorphology (Scheidegger 1970), where it is recognized that any integral 
around a contour (eg its length, or our function g(r) defined by (9)) has a value dependent 
upon the fineness of scale on which one is prepared to examine the surface. In our case 
the natural scale is provided by the wavelength I ,  which predominates in the incident 
pulse, and we may sum up our argument by saying that if we intend drawing a map of 
the surface, there is no advantage in the thickness of the ink lines used for the contours of 
constant r being less than 10/4. 

It may happen that a naturally occurring surface contains no irregularities whose 
scale is approximately I,, . Such a surface is smooth according to our criterion, since the 
finer irregularities cannot be perceived by the exploring pulse, while the coarser variations 
contribute in the form of geometrical reflections which can be discerned in the recon- 
structed smoothed function g(r). 

Now let us consider how different parts of the echo arise from different regions of the 
surface. If we assume the signal F ( t )  to begin at t = 0, then the first return will be received 
at a time t = to = 2r,/c where ro is the distance of S from the nearest point of the surface. 
For most surfaces this nearest point will be approximately vertically below S ; if this is 
assumed, and r ,  measured for a number of different source positions R in the plane of 
height h, then a rough map of the surface f ( R )  can be obtained simply by calculating 

(15) 

This method, utilizing the first return, is the simplest way of interpreting the echo and it 
is the one most commonly used (eg in sonar). Although it has proved extremely useful 
in ascertaining the subglacial topography of Antarctica (Robin et a1 1969), it clearly 
neglects an enormous amount of information. 

For a short time after the first return the echo arises from those contours r which 
are exploring the parts of the surface nearest to S. These will generally take the form of 
loops surrounding the peak at ro on the surface, as in figure 3(a). At the time t = to + T, 
where T is the duration of the outgoing pulse, the echo will arise from all those con- 
tours between r = ro (corresponding to the trailing edge of the outgoing pulse) and 
r = r,+cT/2 (corresponding to the beginning of the outgoing pulse); this band of 
contours is shown schematically in figure 3(b) for a smooth surface whose topography 

f ( R )  N h - ro(R). 
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does not vary significantly over distances corresponding to a pulse length cT = mi., 
(m is the number of ‘waves’ in the pulse) and in figure 3(c) for a rough surface, where the 
topology of the contours changes drastically over the contributing range of r. 

( e )  

Figure 3. Contours contributing to different parts of echo. (a) Shortly after first return; 
(b)  at time Tafter first return (smooth surface); (c) at time Tafter first return (rough surface); 
(d)  in the tail of the echo (smooth surface); (e)  in the tail of the echo (rough surface). 

For times much later than t = to+ T the echo will come from a band of contours 
whose edges are separated by Ar = cT/2, corresponding to more distant parts of the 
surface. After a long enough time these contours contributing to the tail of the echo 
will, if the surface slopes have a finite maximum value, form single closed loops for each r 
(topologically equivalent to the circles from a flat surface), as shown in figure 3(d) 
(smooth surface) and figure 3(e) (rough surface). For a smooth surface, where the 
contributions come from the reflection points, the echo strength from this band of 
contours will be negligible since the simple closed contours for large rwill never introduce 
new reflection points. Isolated late returns in a signal therefore indicate that the surface 
is smooth, with isolated distant points which have exceptionally large slope values, 
so that the r sphere can touch and not cut the surface there. 

For a rough surface, the long-time contours shown in figure 3(e) give a diffusely- 
scattered contribution to  the echo tail, from which statistical information can be deduced, 
whose nature will be explored in a later paper ; this information augments the general 
topographical knowledge that can be obtained from the first return. 

4. Inferences about the surface: one dimensional case 

If the surface height f is known to vary only in one direction, then we might hope to  
be able to extract from g(r )  sufficient information to determine the form of the surface 
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completely, apart from an unavoidable ignorance about the particular direction of 
variation (which could perhaps be resolved by moving the source and receiver to a single 
different position). If the direction of variation is x, then we require the function f(x);  
we ignore resolution difficulties for the moment. 

The general ‘surface function’ g(r), defined by (9), takes on a simple form if we write 
the 1 integration (around the r contour) in terms of the variable 

p (x2 + (h  -f(X))2)”2. (16) 

Each value of p defines a circle centred on S ,  lying in the plane y = 0, which cuts the 
surface at the points xi(p) where i is a positive integer (see figure 4). As the r contour is 

Figure 4. Intersections of the p circle with the surface at the points xi(p).  

described, p varies between ro (from x = 0)and r ; at each value ofp therearecontr,,utions 
from the different parts of the contour, specified by the values xi@). A short calculation 
then yields the transformation 

-- dl IWr, xi) - (h -f(Xi))Vf(xi)l 

where the factor two comes from the half of the surface for which y is negative, and the 
Ci arises because of the need to include all sections of the contours. 

If this is substituted into (9), the result is 

where 

, 

The lower limit of integration in (17) has set equal to zero and not ro, since y = 0 if 
p e r o .  This new function y(p) represents the totality of the information that can be 
obtained about the surface from its echo ; it can be found ifg(r) is known, since (17) is an 
Abel integral equation whose solution (B6cher 1926) is 
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However, we have equation (13) for g(r),  and if we substitute it into (19) we arrive after 
some algebra at a formal representation for y(p), which is the analogue of equation (13) :  

The functions Jo and ,Yo are, respectively, the Bessel functions of the first kind of order 
zero, and the Struve function of order zero (see Abramowitz and Stegun 1964, pp 358. 
496). The real and imaginary parts occur in (19) because we have made use of the fact 
that the signal and echo are real functions of time, to eliminate negative frequencies. 

To check the consistency of our work, and also to help understand these complicated 
expressions, let us evaluate both sides of (20) for a flat surface. Equation (6) gives 

$(a) exp(2iwhjc) 
F(o) - - 2h ' 

-- 

The right hand side of (20) can now be evaluated in terms of tabulated sine and 
cosine transforms (Erdelyi 1954), to give 

where 8 again represents the unit step function. But this result can also be obtained by 
evaluating y(p) directly from its definition (l8), since there are no intersections .xi of 
the p circle with the flat surface whilst p < h after which there are two, specified by 

X ,  = ' f (p2-h 2 ) 112 

hence equation (21). 
Let us now discuss the function y(p) in detail, along lines similar to Appendix 2 

where the corresponding(morecomp1icated) problem forg(r) is worked out. Its behaviour 
is dominated by thoss values of p denoted by pc for which the denominator of (18) 
is zero; these are the geometrical reflection points x, where (equation (16)) 

By contrast with the general function g(r), which is discontinuous, or at worst 
logarithmically singular, at these points, the present function y(p) actually has poles there, 
and is therefore potentially a more sensitive indicator of the form of the surface. If we 
ignore the rare points where higher order reflections occur (characterized by 

__ = o  d2p(x = xC(pc))  
dx2 

as well as (22)), then there are just two types of reflection point, corresponding to the 
first (d2p/dx2 > 0) and the last (d2p/dx2 < 0) contact of the p circles with parts of the 
surface (in figure 4, x6 is a point of the first type, and x4 a point of the second type). 
The form of y(p) near to the singularity can be obtained by expanding (18) and (16) about 
pc and xc,  with the result 

an expression that describes reflections of both types, and reduces to (21) for a flat 
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horizontal surface, which is a reflection ofthe first type with x, = 0, pc = h.  Equation (23) 
shows that only weak singularities in y(p) are produced by highly curved surfaces, for 
which 

A moment's thought about the possible topologies of intersection of the p circles 
with surfaces which are continuous in slope soon shows that any reflection point of 
type two must be associated with two reflection points of type one, occurring for smaller 
p.  The simplest surface for which this occurs is shown in figure 5(a): reflection occurs at 
p1 (type one), p2 (type one) and p 3  (type two). The two points of type one each give rise 
to two intersections; the intersection originating from p1 which moves off to infinity 
towards the right causes a singularity shown in figure 5(b), while the intersection from 
p2 which moves off to infinity towards the left causes a singularity shown in figure 5(c). 
The other two intersections from p1 and p 2  approach and coalesce at  the singularity 
occurring at p 3  which is the reflection point of type two, as shown in figure 5(d and e). 
The total function y(p) is the sum of all these singular contributions, and is shown in 
figure 5 ( f ) .  

s 

Figure 5. Contributions to y(p) from a surface with three reflection points. (a)  Identification 
of reflection points on surface; (b)  contribution from right hand intersection due to p1  ; 
(c) contribution from left hand intersection due to p z  ; (d)  contribution from left hand inter- 
section due to p l  ; (e)  contribution from right hand intersection due to p2 ; ( f )  form of the 
total function y(p). 

This association between the ridges and valleys of the landscape as seen from S ,  
and the singularities of y(p), suggests that it might be possible to deconvolute the 
observations and determinef(x) (subject of course to the obvious left-right ambiguity) 
merely from the form and type of the singularities. To examine this, consider the 
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function g(p) shown in figure 6(a) : there are clearly five reflection points, the three nearest 
the source (pl, p 2 ,  p 3 )  being of type one, and the remaining two (p4, p 5 )  being of type 
two. Thus there are three ridges and two valleys in the landscape. However, we cannot 
decide from this alone whether for instance, the deeper valley ( p s )  lies between the two 
highest ridges (pl and p 2 )  as in figure 6(b), or between the two lowest ridges, as in 
figure 6(c). Nor is it possible to resolve this and similar ambiguities by appealing to 
equation (23), which relates the curvature at a reflection point to the strength of the 
resulting singularity in y(p) since it is possible to adjust the curvatures at p l , .  . . , p s  
in figure 6(b and c) independently. It would, of course, be possible to resolve the 
ambiguities by moving the source along the x axis and using the extra dimension of 
information thus obtained, possibly in the form of a plot of the critical reflection radii 
pc against x ; this question will be examined in a later paper. 

P, PZ P, P4 P5 

(U) 

Figure 6. (a )  Typical form for ~ ( p ) .  ( b )  and (c):  two of the possible surfaces that could give 
rise to the same ~ ( p ) .  

In these illustrative examples we have assumed for simplicity that the surface is 
smooth on a small scale; but any real surface contains irregularities on all scales of 
fineness, and similar remarks can be made about y(p) as were made in 8 3 about the 
more general function g(r), except that y(p), because of its greater sensitivity to the form 
of the surface, is even more mathematically pathological than g(r)  ; in fact it is singular 
at every point! But the singularities due to dust, atoms etc are weak (cf (23)  and the 
succeeding discussion), so that the average value of y(p), when smoothed over small 
ranges, is well defined, and graphs showing y(p) with separated singularities (eg figures 5 
and 6) refer in practice to the case of smooth surfaces, where the reflection can be 
described by geometrical optics, since the smoothing distance that must be employed 
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in practice depends on the incident signal F ( t )  being of order 1,/4 as we have already 
discussed in connection with g(r) .  

It is important to remember from the discussion in $ 3  concerning g(r)  that this 
smoothing must be carried out directly on y ( p )  and not on the surface itself; its effect on 
inferences about the surface depends on the height h of the source. To see this, consider 
figure 7(a, b, and c) which shows the same smooth surface viewed from various distances ; 

S 
I 

P- 

P- 

Figure7. The same surface viewed from three distances, and the resulting smoothed 
functions ~ ( p ) .  (a) h small, only one reflection point; (b)  h medium, several reflection points, 
separated by distances exceeding 1,/4 ; (c) h large, many reflection points, separated by 
distances less than &/4. 

it is clear that even for the most gently undulating surface the nearly-straight p circles 
for large h will intersect at a large number of points, giving a function y(p) containing a 
large number of reflection singularities. Eventually these singularities will occur at 
values of p which are closer together than &/4, and it will no longer be possible to discern 
them (figure 7(c)) by processing the received signal according to equation (20) or any 
similar prescription ; in another terminology we might say that the Fraunhofer limit 
has been reached. 

5. Conclusions 

In this preliminary survey of the rough-surface deconvolution problem, we have drawn 
attention to the functions g(r)  and y(p) as being the most natural and direct embodiments 



286 M V Berry 

of the information obtainable about the surface by analysis of the echo and pulse involv- 
ing a single source and receiver point. Neither of these functions are mathematically 
well behaved for real surfaces (their derivatives do not exist at any point), but vary over 
infinitely small distances, a fact which corresponds to the fine detail that can be probed 
if the exploring pulse contains high frequencies. In practice the upper limit of frequencies 
which are significant in the incident pulse spectrum ( N coo) means that we must deal, 
not with g(r)  and y(p) directly, but with the smoothed forms of these functions averaged 
over a distance of about &/4. 

The two surface functions depend on the undulations of the surface via the topology 
of the contours of constant distance from the source. The points where this topology 
changes are the geometrical reflection points, which, if they are much further apart 
than the minimum distance (A,,/4) that can be resolved, dominate the form of g ( r )  and 
y ( p )  ; this explains the geometrical optics limit for pulses. 

In future work we propose to examine the relation between the statistical properties 
of g(r)  and y(p) and the statistics of the surface. Further, we intend actually to calculate 
numerically the integrals (13) and (20) for ultrasonic pulses and echoes involving artificial 
rough surfaces. Finally, we shall examine the way in which further information about the 
surface can be extracted from the variations of g(r)  and y(p) with source position. 
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Appendix 1 

I t  is possible to derive our basic formula (4) from the results given by Beckmann and 
Spizzichino (1963, p 27), by writing the incident spherical pulse (3) as a spectrum of 
harmonic plane waves of various frequencies and directions. It is more illuminating, 
however, to proceed directly from the familiar Kirchhoff diffraction integral. The 
physical assumption is that the wavefunction on our perfectly reflecting surface is zero, 
and the Kirchhoff approximation is that this can be achieved by making the outgoing 
wave on the surface equal and opposite to the incoming wave there. The wave received 
back at the source is then given by an integral over the rough surface E. Making use 
of the identity of the source and receiver positions enables us to write the contribution 
to the echo from the element dC of the surface distant r from S in the following form 
(see eg Longhurst 1957, p 193), which is valid if r >> A,, : 

dCF’(t - ( 2 r / ~ ) ) n  . P 
d$(t) = - 

2ncr2 

In this expression n is the unit normal to the surface at the point considered (pointing 
into the illuminated half-space) and P is the unit vector along the line from dX to S 
(see figure 1); n . P is the obliquity factor for this case. 

If z is a coordinate, measured vertically upwards from 0, then the transformation 
required in order to integrate over the reference plane instead of X is 

dR = n,dX. (A.2) 
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The explicit expressions for n and P in (R, z) coordinates are easily derived to be 

and 

These explicit forms, and the transformation (A.2), can be used with the formula (A.l) 
for the wave radiated from an element of the surface, to yield the following expression 
for the received signal : 

By writing V, f in terms of VRr from equation (l), this can be written as 

Thus we have arrived at a Kirchhoff integral which is identical with (4) except for 
the extra term R . Vr/r, whose effect on $(t) we must now assess. Integrating the second 
term by parts, we may write, symbolically 

* =  --J 1 

= - i S d R Z + k j d R F V . ( & )  F’ 

N --jdR-+- 1 F’ dR- 

2RC 

2RC 

s r;h 27T crh 2~ 

where we have assumed h >> f and r 1: h as order of magnitude estimates. Now if the 
incident signal has a predominant frequency wo we may write 

so that the second integral is negligible in comparison with the first if 

1 0 0  - << - 
r c  

that is, & << h, which is precisely the condition ( 5 )  as well as the condition for the Kirchhoff 
theory (A.l) to be valid. 

Our convenient basic equation (4) is thus completely equivalent to the Kirchhoff 
integral (A.4) with the much more complicated obliquity factor. In fact for theoretical 
purposes (4) is much better than (A.4) since it gives the flat-surface limit (6)  exactly, 
whereas if we use (A.4) we only get this limit after a messy approximation procedure. 
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Appendix 2 

In order to understand the geometrical-optics limit for the function g(r), it is not con- 
venient to work with the direct representation (9) involving the r contours. An equivalent 
expression can be obtained by writing, in equation (4) 

which yields, on comparison with (8) and replacement of the delta function by its 
Fourier transform, the following results : 

= -1 1 "  dkexp(- ikr)JIdR exp(ikr(R)) 
2nr --xl h - f  (RI ' 

(A .5 )  

Considered for fixed k as a function of position R on the reference surface, the inte- 
grand is oscillatory except at the geometrical reflection points where equation (1 1) holds. 
There will always be at least one such point (even for a flat surface), and we label their 
positions by R, and the radii of the corresponding r spheres by r , .  The geometrical- 
optics approximation results from assuming that all the contributions to g(r) come from 
the points Ri and that these contributions can be found by evaluating the second 
integral in (AS) by the method of stationary phase, which amounts to replacing 
exp(ikr(R)) by its (two dimensional) osculating gaussian functions near the points Ri . 
We ignore for the moment questions as to the validity of this procedure, and merely 
quote the result 

where the phase factors E, and cy are given by 

Z2r(Ri) 
c j i )  = exp( k:) if k- "Rf >< 0. (A.7) 

The denominator of expression (A.6) vanishes, and the method of stationary phase 
cannot be applied in the simple form used here, if any of the reflection points involves 
focusing, for which equation (12) holds; such cases arise only rarely, and we do not 
consider them here. 

At a reflection point R, the topology of the r contours changes, and the different 
phase factors (A.7) correspond to the various ways in which this can occur : there are 
three cases : 

Case (i) : hilltops (minima of r(R), elliptical contours degenerating to  a point at Ri). Here 
?,2r/dxz and a2r/ay2 are both positive, and application of (A.7) gives, for the combination 
of phases occurring in (A.6) 
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so that it is necessary to evaluate the integral 

( A 4  
dk - exp{ik(r, - r)> I-, k 

Z(r) 3 i 

in order to find how the hilltop at  Ri contributes to g(r). This integral is defined by the 
deportment of the path of integration in the complex k plane in relation to the pole at 
k = 0, and this can be established uniquely by using the condition that g(r) must always 
be positive (cf (11) or the first of equations (A.5)). The result of the integration is a step 
function 

Z(r) = 2n:Q(r - r i )  

so that the contribution to g ( r )  from all hilltops (htp) is 

A special case of this formula is the flat surface, for which there is only one hilltop, at 
Ri = 0, ri = h, and g(r) is given by equation (10). 

Case (ii): floors of hollows (maxima of r(R), elliptical contours degenerating to a point 
at ri). There a2r/ax2 and d 2 r / a y 2  are both negative, and an argument precisely similar to 
that given for case (i) leads to the result, for floors of hollows (foh) 

(A.lO) 

Case (iii): saddle points (contour for r = ri crosses itself at Ri).  In this case a2r/ax2 and 
a2r/ay2 are of opposite sign, and the integral to be evaluated for g(r) is 

1 I-“exp{ik(ri-r)} dk 
(A.11) 

which is infinite no matter how it is interpreted! To understand this behaviour it is 
necessary to consider the osculating surface which is implied by the application of the 
method of stationary phase to this case ; in a suitable coordinate system, the approxima- 
ting function r(R) has the form 

(A. 12) 

where a and b are positive. The contours corresponding to this expression are shown 
in figure 8;  they are infinitely long, and that, basically, is why the integral in (A . l l )  
diverges, since according to (9) the function g(r) depends on an integral around the r 
contour. 

For any real surface, of course, the r contours are of finite length, the commonest 
shape for a contour going through a saddle point being the ‘figure of eight’ (cf figure 3(c)). 
The contours corresponding to all r near to ri will have approximately the same length, 
and this fact alone will result in a large contribution to g(r) .  But we are interested in the 
qualitative feature that arises from the neighbourhood of the saddle point, irrespective 
of what the contour does elsewhere. To extract this contribution, we consider the surface 
defined by (A.12) as being cut off at some radius R = L, and work out g(r )  in the limit of 
large L ;the required contribution will be that part of the result which is independent of L. 

r(R) = r i+ax2 - by2 
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/ /  /- 

Figure 8. Contours near a saddle point. 

From (A.5) and (A.12), the integral to be evaluated is, using polar coordinates R. 
for R 

"J. " L  

x Jo2ff d$ exp{ikR2(a cos2$ -b  sin24)}. 

The integration over R is trivial, and the resulting integral involving k is similar to (A.8) .  
which leads to 

1 li e(r  - r i )  - 6(r - ri -- L2(a cos2+ - b sin2+)) 
a cos2+ - b sin2+ r(h -,f(Ri)) S, " 

A tedious inspection shows that the step functions prevent the pole contributing to the 
range of integration, and also shows that g(i)[r)  is positive. The integral over $ is 
tabulated (Gradshteyn and Ryzhik 1965, p 152), and in the limit of large L,  when the zero 
of the argument of the second step function nearly coincides with the pole, the result 
can be written explicitly as 

g(')(r) = 

g(')(r)  = 1 In( I 2L2ab j. 
r(k -f(R,))(ab)'l2 r - ril(a + b) 

The logarithm may be split into the sum of a term depending on L but not r ,  which 
corresponds to the contribution from the distant parts of the contours, and a term 
independent of L which gives the characteristic form of g(r)  as r passes through a saddle 
point (sad). This second contribution is the one we are seeking; it can be expressed in 
invariant form as 

(A. 13) 

(saddles) 

We can sum up our conclusions about the geometrical-optics approximation to g(r )  
by saying that the function is dominated by step discontinuities which appear (with 
increasing r )  at hilltops and disappear at  the floors of hollows, and by logarithmic 
singularities which appear whenever the r sphere touches a saddle point. In order to 
ascertain how far the true function g(r)  will resemble the approximation we have derived, 
it is necessary to examine the validity of the stationary-phase method that we have used. 
If the surfacef(R) is smooth, then our approximation (A.6) is justified for those k which 
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are so large that the ‘wavelength’ 2n/k is small compared with the variation of r(R) 
over the surface. This will always be true for sufficiently large k,  so that the fine structure 
of g(r)-the discontinuities and singulariLes-is given correctly by our approach. But 
for small k the method breaks down, and the slow variation of g(r)  between adjacent 
reflection points is not given correctly by any of our three formulae (A.9), (A. 10) or (A. 13) ; 
this part of the behaviour of g(r)  depends in detail on the shape of the r contours, and 
must be calculated directly from (9). 

For real surfaces, which are not smooth but vary on all scales, the function g ( r )  is 
pathological, and must be ‘interpreted’ in a way that depends on the form of the incident 
pulse, as discussed in § 3 of the paper. 
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